<u>YEAR II</u> SEMESTER - IV

APPLIED MATHEMATICS BEG 204 HS

	Seme	ester	IV						Year	II	
Te	eachir	ng		Examination Schedule					L		
Schedule				Final Internal					ota	Re	
Hours/Week							Asse	ssment	M	ma	
			Theo	ory	Pract	ical	Theory	Practical	ark	rks ark:	
							Marks	Marks	S		
L	Т	Ρ	Duration	Marks	Duration	Marks					
3	1	-	3	80			20		100		

COURSE OBJECTIVES: The aim of this course is to expose students to theory of complex variables, Fourier and Z-transforms applied to signal processing. The course also imparts the fundamental knowledge on Wave and Diffusion equations with coordinate systems.

S.N.	Chapter	Lecturer	No. of	Marks
		Hours	questions	
1	Complex variables:	6	1	14
	Function of complex variables, Properties of			
	complex variables, Geometrical interpretation of			
	complex number, Geometrical interpretation of			
	Z_1+Z_2 , Geometrical interpretation of Z_1-Z_2 ,			
	Geometrical interpretation of Z ₁ Z ₂ , Geometrical			
	interpretation of Z ₁ /Z ₂ , Triangle inequality, Powers			
	and roots of complex numbers, Complex analytics			
	functions, Functions and sets in the complex			
	plane, Limits, Continuity and Derivatives, Theorem			
	on limits, Limits involving point at infinity,			
	Continuity, Uniform continuity, Derivatives and			
	related theorem, Analytic functions, The necessary			
	conditions for the analytic functions, Sufficient			
	condition for the analytic functions (CR Equation),			
	Polar form of CR equations, exponential and			
	circular functions of complex variables, Hyperbolic			
	functions of complex variables, Relation between			
	complex trigonometric and hyperbolic functions,			
	Harmonics functions and related theorem,			
	Orthogonal system, Methods of constructing and			
	analytic functions, Simple method, Mini Thomson's			
	methods, Another methods by using CR equation.			
	Conformal mapping, Some standers			
	transformations, Conformal mapping and special			
	liner transformations, Liner fractional			
	transformation, Fixed points of liner			
	transformation. Constructing conformal mapping			

	between given domain, Complex integral, Cauchy Integral, Simple connected region, Multiple curve, Extension of Cauchy Integral Theorem, Cauchy Integral formula, Converse of Cauchy Integral Theorem, Cauchy Inequality, Liouville's Inequality, State and prove Taylor's Theorem, Taylor's series of some special theorem, State and Prove Laurent's Theorem, Definition and uses of Singularities, , Definition and uses of Zeroes and Poles, Zeros of analytic function, Complex integration, Residues of Complex functions, Residues of a simple pole Cauchy's Residues			
	theorem. Evaluation of real integral.			
2	Z-Transforms: Introduction, Discrete time signals and sequences, Definition theorem of Z-transforms, Region of converges, Properties of Z- Transforms, Linearity, Multiplication by a ^k , Multiplication by k, Division by k, Multiplications by constant a, Real translation theorem (shifting theorem), Shifting to Left and Shifting to Right theorem, Complex Translation Theorem, Initial value theorem, Final Value Theorem, Unit Step Function, Unit Ramp Function, Polynomial Function, Exponential Function, Sinusoidal Function, Unit Impulse Function, Real Convolution Theorem, Z- Transforms of some Slandered Functions, Inverse of Z- Transforms, Direct division Function, Partial Fraction Expansion Method, Inversion Integral method, Application of Z- Transforms and initial value Problem	12	2	28
3	The Fourier Transform: Introduction, The Fourier Integral, The Fourier Integral Odd and Even Functions, Fourier Sine and Cosine Integral, Fourier Complex Integral, Fourier Transform, Derivation of Fourier Cosine Transform, Derivation of Fourier Sine Transform, State and Prove Convolution Theorem of Fourier Transform, Parseval's Identity for Fourier Transform, Parseval's Identity for Cosine Transform, Parseval's Identity for Sine Transform, Relation between Fourier and Iaplace Transform.	15	2	28
4	Partial Differential Equation: Applications of Partial Differential Equation, One Dimensional Wave Equation, One Dimensional Heat Equation, Two Dimensional Laplace	8	2	28

	Equation, Two Dimensional Poisson Equation, Three Dimensional Laplace Equation, Derivational of One Dimensional Wave Equation (Vibration of a string), Derivational of Solution of One Dimensional Wave Equation, Solution of Wave Equation with Given Boundary and Initial Condition, Heat Equation, Diffusion Equation, Solution of Heat Equation, Solution of Heat Equation with Given Boundary and Initial Condition, Solution of Heat Equation with Ends of the Bar are Insulated, Laplace equation in Two and Three Dimension, Solution of Laplace Equation, Laplace Equation in Polar Coordinates, Solution of General Laplace Equation, Cylindrical Coordinates, Change of Laplace Equations in to Spherical coordinates, Solution of Three Dimensional Laplace Equations, Cartesian Form, Spherical Form, Cylindrical Form.			
5	Linear Programming: Introduction, Solution of L.P.P., Formulation the Problem of L.P.P., Graphical Method, Surplus Variables, Slack Variables, Basic Feasible Solution, Basic and Non Basic Variables, Degenerate and Non Degenerate Solution, Feasible Solution, Optimal Solution, Main Steps of Simplex Method, Formulation of Duel Method, Formulation of Duel Problem, Minimization Using Duel Problem.	4	1	10
6	Total	45	8	80

Note: Chose any six questions but **S.N.5 is compulsory.**

BIOMECHANICS BEG 2C1 BM

Semester IV

linester	- '									I cui II
Teac	hing Sche	edule	Examination Schedule							
Hours/Week			Final				Internal		КЦ	Re
							Asse	ssment	ota	ma
		Theo	ory	Practical		Theory	Practical	ks 1	rks	
			-			Marks	Marks	s		
L	Т	Р	Duration	Marks	Duration	Marks				
3	1	-	3	80	_	-	20	25	125	

COURSE OBJECTIVE:

- To provide basic mechanical features of human body and tissues.
- To provide basic idea on application of mechanics to study human body- different joints, hard and soft tissues as well as body fluids.

1. Forces in Joint:

1.1 Joint movement terminology

- **1.2** Classification of joints- based on movement and axes
- **1.3** Elbow
 - 1.3.1 Introduction
 - 1.3.2 Loads on elbow
 - **1.3.3** Derivation for joint reaction force
 - 1.3.4 Problems
- 1.4 Shoulder
 - 1.4.1 Introduction
 - 1.4.2 Shoulder joints
 - 1.4.3 Problems
- 1.5 Hip
 - 1.5.1 Introduction
 - 1.5.2 Forces in hip joints
 - 1.5.3 Derivation for joint reaction force
 - 1.5.4 Problems
- 1.6 Knee
 - 1.6.1 Introduction
 - 1.6.2 Forces in Patellofemoral joint
 - 1.6.3 Forces in Tibiofemoral joint
 - 1.6.4 Problems
- 1.7 Spine
 - 1.7.1 Introduction
 - 1.7.2 Stress on man's back muscle
 - 1.7.3 Loads on Spine
 - 1.7.4 Problems
- 1.8 Ankle
 - 1.8.1 Introduction
 - 1.8.2 Ankle joints
 - 1.8.3 Loads on the foot
 - 1.8.4 Ankle Injuries
 - 1.8.5 Problems
- 1.9 Wrist
 - 1.9.1 Introduction
 - 1.9.2 Radiocarpal and Midcarpal joints
 - 1.9.3 Motion
 - 1.9.4 Wrist injury

(8 hour)

Year II

1.10 Additional Problems

2. Skeletal Biology:

- 2.1 Introduction
- 2.2 Types of bone
- 2.3 General structure-parts of a bone
- 2.4 Composition of bone
- 2.5 Quantitative representation of bone composition
- 2.6 Basic stereology
- 2.7 Bone cells
- 2.8 Cartilage
- 2.8.1 Types and composition
- 2.8.2 Mechanical Significance Organization of Articular Cartilage
- 2.9 Longitudinal growth of bone
- 2.10 Modeling and Remodeling of bone
- 2.10.1 Modeling Vs. Remodeling
- 2.10.2 Problems
- 2.11 Fracture healing
- 2.11.1 Introduction
- 2.11.2 Methods of fracture healing
 - 2.11.2.1 Indirect fracture healing
 - 2.11.2.2 Direct fracture healing
 - 2.11.2.3 Distraction Hystogenesis
- 2.11.3 Factors affecting fracture repair
- 2.11.4 Healing time
- 2.11.5 Important tissues in fracture healing
- 2.11.6 Biological phases of fracture healing
- 2.11.7 Torsion test-Biomechanical stages
- 2.11.8 Electrical phenomena

3. Mechanical Properties of Tissues:

- 3.1 Bone
- 3.1.1 Elastic Constants & Stiffness matrices
- 3.1.2 Ultrasonic wave propagation
- 3.1.3 Strength of a whole bone: problems
- 3.1.4 Mechanical Failure of Whole bones
- 3.1.5 Material properties of cortical bone
 - 3.1.5.1 Effects of osteons on mechanical properties
 - 3.1.5.2 Determinants of osteonal bone mechanical properties
 - 3.1.5.3 Anisotropy of cortical bone mechanical properties
- 3.1.6 Material properties of cancellous bone
 - 3.1.6.1 Mechanical testing
 - 3.1.6.2 Stress-strain curve
 - 3.1.6.3 Continuum Limit
 - 3.1.6.4 Determinants of cancellous bone mechanical properties
 - 3.1.6.5 Comparison with cortical bone properties
 - 3.1.6.5 Invariance of yield strength
- 3.2 Ligaments & Tendons
- 3.2.1 Introduction
- 3.2.2 Functional considerations & differences
- 3.2.3 Mechanical behavior
 - 3.2.3.1 Quasistatic tensile properties: load-deformation curve
 - 3.2.3.2 Viscoelastic properties
 - 3.2.3.3 Age vs. Mechancial behavior

(2 hrs)

(6 hours) (4 hrs)

4 nrs)

(4 hours)

4. Mechanics of Soft Tissues:

- 4.1 Collagen
 - 4.1.1 Collagen fibrils and fibers
 - 4.1.3 Stress-strain relationship
 - 4.1.4 Stress relaxation
 - 4.1.5 Preconditioning
 - 4.1.6 Change in mechanical properties with life cycle
- 4.2 Elastin
 - 4.2.1 Introduction
 - 4.2.1 Functions
 - 4.2.2 Incomplete fixation in aldehyde
- 4.3 Resilin
- 4.4 Abductn
- 4.5 Elasticity due to Entropy& Internal energy changes
- 4.6 Thermodynamics of elastic deformation
- 4.7 Quasi-Linear Viscoelasticity
- 4.8 Concept of Pseudo-elasticity

5. Synovial Joint Mechanics:

- 5.1 Introduction
- 5.2 Functions
- 5.3 Mechanical properties of cartilage
 - 5.3.1 Permeability
 - 5.3.2 Indentation testing
 - 5.3.3 Tensile tests
 - 5.3.4 Confined compression creep test
 - 5.3.5 Confined compression relaxation test
 - 5.3.6 Effect of strain rate- tension test& compression test
- 5.4 Lubrication of Joints
 - 5.4.1 Introduction
 - 5.4.2 Wear
 - 5.4.3 Types of Lubrication
 - Boundary Lubrication
 - Squeeze film Lubrication
 - Hydrodynamic Lubrication
 - Elastohydrodynamic Lubrication
 - Weeping Lubrication
 - Boosted Lubrication

5.4.4 Use of Reynold's equation & feasibility of hydrodynamic lubrication

6. Muscle Mechanics:

- 6.1 Introduction
 - 6.1.1 Skeletal muscle
 - 6.1.2 Heart Muscle
 - 6.1.3 Smooth muscle
- 6.2 Functional arrangement of Muscles
- 6.3 Comparison of force transmission in parallel and in pinnate arrangement
- 6.4 Structure of skeletal muscles
- 6.5 Sliding element theory of muscle action
- 6.6 Cross-bridge theory
- 6.7 Hill's equation for tetanized skeketal muscle

(4 hours)

(4 hours)

(4 hours)

1 • .•

6.8 Cardiac Muscle

- 6.8.1 Features
- 6.8.2 Comparison with skeletal muscles
- 6.8.3 Properties of an Unstimulated Heart Muscle
- 6.8.4 Hill's Equation and its modification

7. Modalities of Elastic and Viscoelastic Solids, Constitutive Equations (8 hours)

- 7.1 Stress Traction and Tensor
- 7.2 Index notation
- 7.3 Kronecker delta
- 7.4 Strain tensor
 - 7.4.1 Derivation of Green's and Almansi's strain tensors
 - 7.4.2 Deduction of Cauchy's infinitesimal strain tensor from Almansi's
- 7.5 Constitutive Equation
 - 7.5.1 Newtonian Viscous Fluid
 - 7.5.2 Hookean Elastic Solid
- 7.6 Viscoelasticity
 - 7.6.1 Stress relaxation
 - 7.6.2 Creep
 - 7.6.3 Hysteresis
- 7.7 Mechanical models for viscoelastic solids
 - 7.7.1 Maxwell model
 - 7.7.2 Voigt model
 - 7.7.3 Kelvin (Linear Standard Solid) model
 - 7.7.4 Derivation of creep and stress relaxation functions

8. Introduction to Bio-Fluid Mechanics

- 8.1 Introduction to Bio-fluid
 - 8.1.1 Blood
 - 8.1.2 CSF
 - 8.1.3 Lymph
 - 8.1.4 Mucus
 - 8.1.5 Saliva
 - 8.1.6 Synovial Fluid
- 8.2 Basics of Blood Rheology
 - 8.2.1 Rheology
 - 8.2.2 Viscosity
 - 8.2.2.1 Factors affecting viscosity
 - 8.2.2.2 Apparent and relative viscosity
 - 8.2.2.3 Viscometers
 - 8.2.3 Characterization of liquids
 - 8.2.2.5 Newtonian and non-newtonian liquids
 - 8.2.2.6 Shear thinning and thickening liquids
 - 8.2.2.7 Bingham Plastic
 - 8.2.2.8 Rheograms
 - 8.2.4 Blood
 - 8.2.4.1 Composition
 - 8.2.4.2 Properties
 - 8.2.5 Blood flow
 - 8.2.5.1 Laminar flow of blood in a tube
 - 8.2.5.2 Derivation for mean velocity and flow rate
 - 8.2.6 Blood viscosity
 - 8.2.6.1 Variation of blood viscosity with temperature, hematocrit & protein concentration

(4 hrs)

(7 hours)

(1 hr)

- 8.2.6.2 Model: Casson's plot
- 8.2.6.3 Fahraeus-Lindqvist effect
- 8.2.6.4 Fahraeus effect
- 8.2.7 Medical applications of blood rheology

8.3 Blood Flow in Vessels & its Measurement (2 hrs)

- 8.3.1 Cardiac output and stroke volume
- 8.3.2 Regulation of blood flow
- 8.3.3 Factors affecting blood flow
- 8.3.4 Regulation in blood pressure 8.3.4.1 Renin-Angiotensin System
- 8.3.5 Measurement of heart activity
- 8.3.6 Measurement of blood pressure 8.3.6.1 Non-invasive method
 - 8.3.6.1 Invasive method
- 8.3.7 Measurement of blood flow
 - 8.3.7.1 Indicator Dilution Method
 - 8.3.7.2 Electromagnetic Flow Meters
 - 8.3.7.3 Ultrasonic Flow Meters

Textbook/s:

- 1. Biomechanics-Mechanical Properties of Living Tissues, Y.C. Fung
- 2. Skeletal Tissue Mechanics, Martin, Burr & Shatkey
- 3. Basic Biomechanics, Susan J Hall

Marks Distribution:	
Chapter	Lect
Eansas in Isint	

Chapter	Lecture Hours	No. of Questions	Marks
Forces in Joint	8	2	16
Skeletal Biology	4	1	8
Mechanical Properties	6	1.5 (1-2)	8-16
of Tissues			
Mechanics of Soft	4	1	8
Tissues			
Synovial Joint	4	1	8
Mechanics			
Muscle Mechanics	4	1	8
Modalities of Elastic	8	2	16
and Viscoelastic			
Solids, Constitutive			
Equations			
Introduction to Bio-	7	1.5 (1-2)	8-16
Fluid Mechanics			
Total	45	10 (one choice)	80

ELECTRONIC DEVICES AND CIRCUITS (BEG 239 EC)

Seme	ester l'		Year II							
Teaching Schedule					Examination	Schedule			Тс	F
Hours/Week			Fir	al Internal Assessment				otal	Rem	
		The	ory	Practical Theory Practical Marks Marks		Practical Marks	Marks	larks		
L	Т	Р	Duration	Marks	Duration	Marks				
3	1	2	3	80			20	25	125	

COURSE OBJECTIVES: To familiarize students with common semiconductor devices and integrated circuits so that they will be able to analyze, maintain and build basic electronic circuits.

1.0 Semiconductor Devices

- 1.1 Introduction to semiconductor materials. (p-type, n-type, p-n junction)
- 1.2 Ideal Diode
 - 1.2.1 Diode circuit symbol
 - 1.2.2 Current voltage characteristics of the ideal diode
 - 1.2.3 Equivalent circuit in the forward and reverse direction
 - 1.2.4 Simple application of ideal diode
- 1.3 Semiconductor Diode and equivalent circuit
 - 1.3.1 Thermal characteristics of junction diodes
 - 1.3.1.1 Forward bias region(Diode current voltage relationship and problems)
 - 1.3.1.2 Reverse bias region
 - 1.3.1.3 Breakdown region
 - 1.3.2 Current voltage characteristic of junction diodes
- 1.4 Modeling the diode forward characteristics
 - 1.4.1 The ideal diode model
 - 1.4.2 The constant voltage drop model
 - 1.4.3 The piecewise linear model
 - 1.4.4 Small signal model of diode
 - 1.4.5 Problems in diode modeling
- 1.5 Reverse Recovery time
- 1.6 Load line analysis
- 1.7 Zener Diode
 - 1.7.1 Zener breakdown
 - 1.7.2 Zener diode introduction and modeling

2.0 Bipolar Junction Transistor

- 2.2 Construction and operation
 - 2.2.1 A simplified structure of the npn transistor
 - 2.2.2 A simplified structure of the pnp transistor
 - 2.2.3 Current flow in an npn transistor biased to operate in the active mode
 - 2.2.4 Current flow in a pnp transistor biased to operate in the active mode.
 - 2.2.5 Circuit symbols and conventions.
- 2.3 Transistor configuration:
 - 2.3.1 CB configuration: Input output family curve
 - 2.3.2 CE configuration: Input output family curve
 - 2.3.3 CC configuration: Input output family curve

2.4 DC Biasing

- 2.4.1 Fixed Bias circuits
- 2.4.2 Emitter Stabilized Biased Circuits
- 2.4.3 Voltage divider biasing
- 2.4.4 DC bias with voltage feedback
- 2.4.5 Problems in each topics
- 2.5 Transistor Switching Network
 - 2.5.1 BJT as an inverter.
 - 2.5.2 Problems

3.0 Field effect transistor

- 3.2 Junction field effect transistor
 - 3.2.1 Construction
 - 3.2.2 Operation
- 3.3 Metal oxide field effect transistor(MOSFET)
 - 3.3.1 Depletion type MOSFET
 - 3.3.1.1 Construction
 - 3.3.1.2 Operation
 - 3.3.2 Enhancement type MOSFET
 - 3.3.2.1 Construction
 - 3.3.2.2 Operation
- 3.4 FET Biasing
 - 3.4.1 Self Bias Configuration
 - 3.4.2 Voltage divider bias Configuration Problems

4.0 Operational amplifier circuits

- 4.2 Ideal op-amps basic circuits
 - 4.2.1 Characteristics of ideal op-amps
 - 4.2.2 Inverting and Non-inverting amplifier and voltage follower
 - 4.2.3 Op- amps circuits for adder, subtractor, integrator and differentiator
 - 4.2.4 Problems
- 4.3 Bias circuits suitable for IC design
 - 4.3.1 Diode connected transistor
 - 4.3.2 Current mirror circuits
 - 4.3.3 Current steering Circuits
- 4.4 The Widlar current source
- 4.5 The differential amplifier
 - 4.5.1 BJT differential pair: basic operation only
- 4.6 Active loads: Basic concept

5.0 Operational amplifier characterization

- 5.2 Input offset voltage
- 5.3 Input bias and input offset currents
- 5.4 Output impedance
 - 5.4.1 Circuit diagram
 - 5.4.2 Mathematical derivation
- 5.5 Differential and common mode input impedances
- 5.6 DC gain, bandwidth, gain-bandwidth product
 - 5.6.1 Gain versus frequency plot analysis
 - 5.6.2 Op-amp specifications- frequency parameters
- 5.7 Common mode and power supply rejection ratios.

- 5.8 Higher frequency poles, setting time
- 5.9 Slew rate
 - 5.9.1 Definition and formula
 - 5.9.2 Problems
- 5.10 Noise in operational amplifier circuits

6.0 Power supplies and voltage regulator

- 6.2 Half-wave and full-wave rectifiers.
 - 6.2.1 Simple half wave rectifier
 - 6.2.2 Centre taped full wave rectifier
 - 6.2.3 Bridge rectifier
 - 6.2.4 PIV calculation for each.
- 6.3 Capacitive filtering and problems
- 6.4 Zener diode as voltage regulator and problems
- 6.5 Series Regulator
 - 6.5.1 Transistor-zener diode voltage regulator
 - 6.5.2 Transistor Op-amp voltage regulator
- 6.6 Shunt regulator
 - 6.6.1 Transistor-zener diode voltage regulator
 - 6.6.2 Transistor Op-amp voltage regulator
- 6.7 IC voltage regulator

7.0 Filter circuits

- 7.2 LC filters: circuits and transform functions
- 7.3 RC filters: circuits and transform functions
- 7.4 Active filters: Introduction

8.0 Untuned and Tuned power Amplifiers

- 8.1 Amplifier classification
 - 8.1.1 Class A amplifier
 - 8.1.2 Class B amplifier
 - 8.1.3 Class AB amplifier
 - 8.1.4 Class C amplifier
 - 8.1.5 Push pull amplifier
- 8.2 Direct-coupled push-pull stages
 - 8.2.1 Amplifier input and output signal variation
 - 8.2.2 Load line for class A transformer-coupled amplifier
 - 8.2.3 Quiescent operating point
- 8.3 Transformer-coupled push-pull stages
 - 8.3.1 Transformer action
 - 8.3.2 Voltage transformation
 - 8.3.3 Current transformation
 - 8.3.4 Impedance transformation
 - 8.3.5 Problems

8.4 Tuned power amplifiers

- 8.4.1 Device characteristics
- 8.4.2 DC and AC load lines
- 8.5 Power dissipation considerations

Chapters	Hours	Marks	No. of questions
Semiconductor diodes	5	10	1
Bipolar junction transistor	6	10-15	1-2
Field effect transistor	5	5-10	1
Operational amplifier circuits	6	10-15	1-2
Operational amplifier characterization	8	10-15	1-2
Power supplies and voltage regulators	6	5-10	1
Untuned and tuned power amplifiers	7	10-15	1-2
Filter Circuits	2	5	1

Refrences:

- 1.0 W. Stanely, "Operational amplifiers with linear integrated circuits", Charles E. Merrill publishing company, Toronto, 1984.
- 2.0 J.G. Graeme, "Application of operational amplifiers: third generation techniques", the burr-Brown Electronic series", McGraw-Hill, New York, 1973.
- 3.0 P.E. Allen and D.R. Holberg, "CMOS Analog Circuit Design", Holt, Rinehart and Winston, Inc., New York, 1987.
- 4.0 A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 2nd Edition, Holt, Rinehart and Winston, Inc., New York.
- 5.0 Theodore F. Bogart, Jeffrey S. Beasley and Gullermo Rico "Electronics devices and circuits" 6th edition,
- 6.0 Robert Boylestad and Louis Nashelsky " Electronics devices and circuit theory" 7th edition

HUMAN ANATOMY AND PHYSIOLOGY II BEG 2B4 BM

Vear II

Semester IV

500											
	Teach	ing Sched	lule	Examination Schedule					Г		
	Hours/Week			Final			Internal		ote	Re	
								Asse	ssment	ul M	al M
				Theo	ory	Practical		Theory	Practical	lark	rks
							Marks	Marks	8	emarks	
	L	Т	Р	Duration	Marks	Duration	Marks				
	3	-	2	3	80			20	25	125	

COURSE OBJECTIVES: To provide knowledge of Human Anatomy & Physiology required for Biomedical Engineering.

CARDIOVASCULAR SYSTEM, BLOOD VESSELS, BLOOD PRESSURE, PULSE & CIRCULATION OF THE BLOOD 10hrs

Introduction of Cardiovascular System (CVS)

a. Types of circulation *b. Organs of CVS **

Heart

i. Gross features of Heart **

ii. Coverings of Heart *

iii. Chambers and valves of Heart *

iv. Blood and nerve supply of Heart **

General heart functions

- a. Action potential of cardiac muscle. **
- b. Ionic mechanism during depolarization & repolarization of cardiac muscle **
- c. Long refractory periods in cardiac muscle cells **
- d. Heart as a pump**

Conducting system of the heart

- a. SA node as Natural pacemaker *
- b. Phases of Cardiac cycle**
- c. Heart rate *

Arterial Circulation

- a. Parts, extent & branches of Aorta *
- b. Major arteries of circulation *

Venous circulation

- a. Vena-cava, extent formation and tributaries of Superior &Inferior vena-cava *
- b. Major veins of circulation *
- c. Portal circulation *

Electrocardiography (ECG), importance of the P wave, QRS complex, T wave **

Cardiac output

a. Blood pressure & peripheral resistance**b. Flow-pressure relationship**

Control of Heart function

a. Baroreceptors*b. Chemoreceptors **Heart sounds* *

Disorders of blood vessel, causes symptoms, diagnostic & treatment measures**

Ischemic heart disease or myocardial infarction causes symptoms, diagnostic & treatment measures **

Abnormal heart rates

- a. Tachycardia *
- b. Brady cardia *
- c. Arrythmia *

LYMPHATIC SYSTEM. LYMPH, LYMPH VESSELS, LYMPHATIC ORGANS & TISSUE 2hrs.

Introduction to lymphatic system

- a. Structure & important groups of Lymph nodes**
- b. Major lymphatic duct as Thoracic duct & Right lymphatic duct *
- c. Physiology of Lymph node & lymphatic ducts *
- d. Components of lymph *

Spleen

- a. Gross & microscopic features of Spleen **
- b. Functions of Spleen *

Thymus

a.Gross & microscopic features of Thymus gland ** b Role of Thymus as an immune organ *

Lymphoid organs

a. Tonsil, Appendix, Gut associated lymphoid tissue(GALT) & Mucosa associated lymphoid tissue (MALT) as lymphoid organs **
b. Physiological importance of the lymphoid organs *

Abnormal lymphoid disease

a. Elephantiasis*

RESPIRATORY SYSTEM, NOSE, NASAL CAVITY, PHARYNX, LARYNX, TRACHEA, BRONCHI, LUNGS, RESPIRATION DISORDERS OF UPPER RESPIRATORY TRACT, BRONCHI & LUNGS 8 hours

Introduction to Respiratory system

a. Structure-function relationship of the respiratory system **

Nose

- a.External nose, nasal cavity its features & boundaries **
- b .Blood and nerve supply of Nose *
- c. Physiology of nasal cavity *

Pharynx

- a. Definition, parts, extent and structure of Pharynx **
- b .Blood, nerve supply & lymphatic drainage of Pharynx *
- c. Physiology of Pharynx *

Larynx

- a. Structure, extent, cartilages, joints and muscles of Larynx **
- b. Interior of larynx *
- c. Blood supply, innervations & lymphatic drainage of Larynx *
- d. Functions of Larynx *

Trachea and bronchi

- a. Structure & extent of Trachea & Bronchi **
- b. Structure-function relationship of bronchial tree **
- c. Physiology of Bronchi *

Pleura

a. Layers of Pleura *b. Functions of Pleura in respiration *

Accessory muscles for breathing

a.Intercostal muscles * b. Diaphargm *

Lungs

- a. Structure, parts and coverings of Lungs **
- b. Hila and root of lung *
- c. Physiology of respiratory mucosa *
- d. Functions of bronchial tree *
- e. Functions of Lungs**
- f. External & internal respiration *
- g. Inspiration & expiration *
- h. Mechanism of breathing *
- i. Mechanics of breathing *
- j. Mechanism of gas transport in the body **
- k. Oxygen & Carbondioxide are transport in the body **
- 1. Oxygen-hemoglobin dissociation curve *
- m. Mechanism of gas exchange **
- n. Composition of air *
- o. Roles of partial pressures of gases **
- p. Diffusion of gases *
- q. Lung compliance **
- r. Surface tension of lung *
- s. Pulmonary surfactant *

Control of respiration

a. Chemoreceptors & their functions *

Lung function tests

- a. Pulmonary ventilation **
- b. Spirometry measurement of lung volumes **
- c. Abnormal lung functions *

Diseases of respiratory tract, causes symptoms, diagnostic & treatment measures

- a. Bronchial asthma **
- b Bronchitis **
- c. Sinusitis *
- d. Pneumonitis **

DIGESTIVE SYSTEM, ORAL CAVITY. DIGESTION, ABSORPTION & METABOLISM. DISEASES RELATED TO DIGESTIVE SYSTEM 8 hours

Introduction to Gastrointestinal Tract (GIT)

- a. Organs of Alimentary canal **
- b. Accessory glands *
- c. General structure of Alimentary canal
- d. Functions of Gastrointestinal tract **
- i. Digestion of carbohydrate, protein & fat *
- ii. Secretion of enzymes for digestion*
- iii. Absorption of nutrients *

Mouth

a.Parts & boundaries of Mouth * b.Functions of Mouth *

Teeth

- a. Types of Teeth*
- b. Structure, blood and nerve supply of Teeth *
- c. Functions of Teeth *

Tongue

- a. Structure, attachment, blood and nerve supply of Tongue **
- b. Types of taste buds in the Tongue *
- c. Physiology taste sense *

Salivary glands

- a. Names of Salivary gland *
- b. Structure & opening of salivary gland *
- c. Blood and nerve supply of the gland *

Functions of teeth system

a. Abnormalities of teeth *

Oesophagus

- a. Structure, parts & extent of Oesophagus*
- b. Functions of Oesophagus*

Stomach

- a. Structure & parts of stomach **
- b. Blood supply, nerve supply & lymphatic drainage of stomach **
- c. Mechanisms of protein digestion *
- d. Phases of gastric acid secretion **
- e. Types of gastric glands & their secretions *
- f. Control & regulation (neural & hormonal) of gastrointestinal processes **

Structure-function relationship of Liver, billiary tract & gall bladder

- a. Gross and histologic feature Liver and gall bladder **
- b. Size, shape, location and blood supply of Liver *
- c. Components & communications of Billiary system **
- d. Functions of liver **
- e. Liver function tests *
- f. Role of gall bladder *

Anatomy of Pancreas

- a. Structure of Pancreas, different parts & its location **
- b. Blood supply to pancreas *
- a. Exocrine role of exocrine pancreas *

Small intestine

- a. Structure & parts of Small intestine **
- b. Blood and nerve supply of small intestine *
- c. Digestion of food materials in small intestine**
- d. Secretion of enzymes involved during digestion of different food materials *
- e. Absorption in small intestine. *
- f. Absorptive surface & food materials absorbed *

Large intestine

- a. Structure, peculiarity of Large intestine *
- b. Blood supply, nerve supply & lymphatic drainage of Large intestine *
- c. Position, structure and location of Appendix *
- d. Secretion & absorption in large intestine *

Metabolic functions of body **

Elimination or defecation of undigested food products *

Digestive system disorders, causes symptoms, diagnostic & treatment measures

- a. Gastritis *
- b. Pancreatitis *
- c. Hepatitis *
- d. Cholecystitis *

URINARY SYSTEM. KIDNEY, URETERS, URINARY BLADDER, BLADDER, URETHRA. DISEASE RELATED TO SYSTEM 6 hours

1. Introduction to the system and organs

- a. Gross features of Kidney *
- b. Microscopic features of Kidney **
- c. Structure of Nephron **

2. Physiology of kidney

- a. Glomerular filtration & its rate (GFR) *
- b. Tubular Reabsorption*
- c. Tubular Secretion *
- d. Excretion of waste products *

3. Role of Nephrone

- a. Functions of Proximal convoluted tubule *
- b. Distal convoluted tubule & its functions *
- c. Role of Loop of Henle in concentration & dilution of urine **
- d. Collecting tubule & its role *

4. Regulation of Salt-water balance

a. Role of Proximal convoluted tubule, Loop of Henle & Distal convoluted tubule in fluid balance **

b. Role of Anti-diuretic hormone in extracellular volume control*

- c. Control of sodium, potassium, hydrogen ion & calcium **
- d. Role of Aldosterone in sodium control *
- e. Renin-angiotensin-aldosterone system in salt balance **

5. Regulation of Acid-base balance

a. Renal control of hydrogen ion *

6. Abnormal Acid Base levels in the body

- a. Metabolic Acidosis *
- b Metabolic Alkalosis *
- c. Respiratory Acidosis *
- d. Respiratory Alkalosis *

7. Structure-function relationship of ureter, bladder & urethra

- a. Extent and parts of Ureter *
- b. Structure of Ureter & its Constrictions *
- c. Structure of Urinary bladder, parts and openings *
- d. Blood supply, nerve supply &lymphatic drainage to Urinary bladder *
- e. Control of bladder function *
- f. Micturition or urination *
- g. Structure of Urethra *
- h. Parts of male urethra & their roles **

8. Abnormalities of kidney functions**

- a. Kidney function tests *
- b. Nephritis causes symptoms, diagnostic & treatment measures **
- c. Kidney failure *

THE ENDOCRINE SYSTEM. PITUITARY, THYROID, ADRENAL, PANCREAS, PINEAL & THYMUS GLAND: 5 hours

1. Introduction to endocrine system

a. Name of different endocrine glands *

2. Principles of endocrine communications**

a. Roles of hormones in homeostasis *

3. Hypothalamus as Neuro-endocrine gland

- a. Releasing Hormones of Hypothalamus *
- b. Hypothalamus as a Neuro-endocrine organ *

4. Pituitary gland

- a. Size, structure and location of Pituitary gland **
- b. Stimulating actions of anterior pituitary hormones on the target organs**
- c. Pituitary as a Master gland *
- d. Effects of of Antidiuretic hormone & Oxytocin from posterior pituitary in target organs *

5. Thyroid gland

- a. Size, structure and location of Thyroid gland **
- b. General functions of the thyroid hormones (thyroxine, T4 & triiodothyronine, T3) *
- c. Role of iodine in the formation of thyroid hormones *
- d. Abnormal thyroid functions hyper& hypo functions *
- e. Hypothyroidism causes symptoms, diagnostic & treatment measures **

6. Parathyroid gland

- a. Size, structure and location of Parathyroid gland **
- b. Role of parathyroid gland in the control of calcium in the body *

7. Pancreas as an Endocrine organ

- a. Size, structure and location of Endocrine pancreas **
- b. List of hormones of alpha, beta & delta cells of pancreas *
- c. Beta cells dysfunctions of pancreas *
- d. Diabetes mellitus types, causes symptoms, diagnostic & treatment measures **

8. Adrenal Gland

- a. Size, structure and location of Adrenal gland **
- b. Endocrine control of Adrenal glands 10
- c. Hormones of adrenal cortex & their actions *
- d. Actions of glucocorticoids as anti-inflammatory & in immune rejection in organ transplant *
- e. Role of adrenal medulla *

9. Thymus gland

- a. Size, structure and location of Thymus gland **
- b. Hormone produced in the thymus & its role *

10. Pineal gland

- a. Size, structure and location of Pineal gland **
- b. Pineal gland in reproduction *

REPRODUCTIVE SYSTEM. MALE & FEMALE REPRODUCTIVE ORGANS. DISEASES RELATED TO SEX ORGANS. 5 hours

A. Introduction to Reproductive system **

- B. Female reproductive organs
- a. Structure and gross features of ovaries, uterus, fallopian tubes and vagina **
- b. General feature of external genitalia *
- c. Pelvic floor muscles and their importance *

C. Female reproductive physiology

- a. Role of ovaries in female *
- b. Understanding of Puberty, Menarche, Menstrual cycle & Menopause **
- c. Follicle development, ovulation & corpus luteum formation *
- d. Female sex hormones *
- e. Functions of uterus *
- f. Role of fallopian tubes in reproduction *
- g. Breasts as milk source for infant *

D. Male reproductive system

- a. Structure and gross features of testis, epididymis, vas deferens, seminal vesicles and penis **
- b. Spermatic cord, contents & embryological basis of its formation **

E. Male reproductive physiology

- a. Puberty, erection & ejaculatory function in male **
- b. Hormonal control of male reproductive system *
- c. Role of androgens (testosterone) in male fertility regulation *
- d. Semen production & transport *
- e. Prostate gland and its function *

F. Contraception in male & female **

- G. Male & female infertility **
- H. Diseases of female reproductive system **
- I. Diseases of male reproductive system **

Symbols

*: Students may expect a short question of 5 marks from this topic. **: Students may expect a long question of 10 marks from this topic.

Laboratories:

1.0 Study of Systematic relationship of Heart and Cardiovascular System

- 2.0 Histological studies of blood cells
- 3.0 Study of Systematic relationship of respiratory system
- 4.0 Histology of Lungs tissue
- 5.0 Study of Systematic relationship of digestive system

- 6.0 Histology of intestine
- 7.0 Study of Systematic relationship of urinary system

8.0 Histology of nephron

- 9.0 Study of Systematic relationship of endocrine system10
- 10.0 Histology of pancreas and adrenal gland
- 11.0 Study of Systematic relationship of reproductive system
- 12.0 Histology of ovaries and testes.

Textbooks:

- 1. Ross & Wilsons Anatomy & Physiology in Health & Illness –Anne Waugh & Allison Grant, Ninth Edition
- 2. Textbook of Medical Physiology A.C. Guyton & J.E. Hall
- Hutchinson' Clinical Methods
 D. Hunter & R.R Bomford
- 4. Concise Medical Physiology S. K. Chaudhary

Marking system

Total hours: 45	No. of Ques	stion: 16	F.M.: 80		
Systems	Hours	No. of Questions	Marks		
CVS/lymphatics	11	4	20		
Respiratory	8	3	15		
GI	8	3	15		
Urinary	8	3	15		
Endocrine	5	2	10		
Reproductive	5	1	5		
Total	45	16	80		

RESEARCH METHODOLOGY (RM 2C8 BM)

Sem	ester	11				y ear 11				
Τe	eachi	ng	Examination Schedule						Т	
Schedule Hours/Week			Fina	al		Internal Assessment				
		The	eory	Pract	ical	Theory Marks	Practical Marks	arks	ks	
L	Т	Р	Duration	Marks	Duration	Marks				
2	1	-		40			10		50	

COURSE OBJECTIVES: To give basic concepts on research, proposal and report writing methods for biomedical engineers.

Chapter 1: Introduction

TT7

. .

a

- What is Research?
- Biomedical research (or experimental medicine)
- Concept of scientific Research
- Process or steps of scientific research
- Protocol review
- Guidelines for research on human subjects
- Ethical of Medical Research

Chapter 2: Research Methodology

- Definition of research
- Types of research
- ✓ Quantitative v/s qualitative research
- ✓ Fundamental V/s applied research
- ✓ Empirical V/s conceptual research
- Reliability & Validity
- Types of validity
- ✓ Content validity
- ✓ Construct validity
- ✓ Criterion validity
- Concept of Reliability

Chapter 3: Research Design

- Purpose of research design
- Characteristics of a good research design
- ✓ Objectivity
- ✓ Reliability
- ✓ Validity
- ✓ Generalizability
- Types of Research Design

3 hrs

x 7

6 hrs

3 hrs

- 1. Historical Research design: Processes of historical research, limitation, Essential Requirement of Research Design
- 2. Conventional Research Design: Limitations
- 3. Descriptive Research Design: Steps and limitation
- Developmental Research design: Types of Developmental research: Longitudinal growth Study, Cross Sectional Growth Study, Trend Study, Cohort Study, Steps and Limitations
- 5. Action Research: Steps and Limitations
- 6. Field Study Research: Steps and Limitations
- 7. True Experimental Research Design: Types, Steps and Limitations
- 8. Evaluation Research Design: Steps and Limitations
- 9. Ex- Post Facto Research Design: Steps and Limitations
- 10. Correlation Research Design: Steps
- 11. Casual Comparative Research Design: Steps
- 12. Case Study Research Design: Steps, Assumptions and Limitations
- 13. Assessment Study Research Design: Steps and Limitations

Chapter 4: Sampling, data collection and data analysis

6 hrs

- Objectives of sampling
- Principles of sampling theory
- Methods of data collection
- Primary sources of data
- \checkmark Use of internet for data collection
- \checkmark Observation
- Secondary sources of data
- Data quality
- Types of measurement
- ✓ Nominal
- ✓ Ordinal
- ✓ Interval
- ✓ Ratio measurement scales

• Processing and classification of data

- ✓ Types of data
- ✓ Data processing, editing and coding
- ✓ Concept of classification
- ✓ Objectives of classification
- ✓ Types of classification
- -Periodical and geographical basis
- ✓ Transcription
- ✓ Methods of transcription
- ✓ Tabulation
- ✓ General Rules for Tabulation

Chapter 5: Mean, Median and Standard Deviation

6 hrs

- Mean: Meaning, Simple arithmetic mean, Weighted arithmetic mean
- Median: Individual series, Discrete Series, Continuous Series

- Standard Deviation: short cut method, step-deviation method, coefficient of variation
- Z-test: Test of significance of a single mean, Difference between means, sample proportion, two sample proportion
- T-test: mean of a random sample, between two means, between means of two samples

Chapter 6: Research proposal and report Writing

- Research topic selection
- Preliminary survey of literature for topic selection
- Research problems: Empirical problems, Analytical problems, Normative problems
- Components of a research problem
- Research questions
- Research hypothesis
- Characteristics of hypothesis
- Research proposal
- Research Proposal Types
- Structure of the research proposal
- Introduction to Report writing
- Types of Research
- Format of research report
- Bibliography

Marks Distribution:

Chapter	Lecture Hours	No. of Questions	Marks
Introduction	3	1	10
Research Methodology	6	2	2×5=10
Research Design	3	1	5
Sampling, Data collection,	6	1	5
and Data analysis			
Mean, Median and	6	1 (a and b)	2+8=10
Standard Deviation			
Research Proposal and	6	1	10
Report Writing			
Total	30	7 (one choice)	40

6 hrs

SOCIOLOGY (BEG299 MS)

Sen	nester 1	IV								Year	II
	Teaching Schedule		Examination Schedule								
Hours/Week		Final		Internal		ΓN	Re				
				Assessment		`ota Iarl	ma				
		Theo	ory	Pract	ical	Theory	Practical	lı KS	rks		
								Marks	Marks		
	L	Т	Р	Duration	Marks	Duration	Marks				
	3	1		3	80			20		100	

COURSE OBJECTIVE: To introduce the sociological aspects relevant to societies.

1.0 INTRODUCTION

- 1.1. Definition of Sociology
- 1.2. Evolution of Sociology
 - 1.2.1 Four stages of development of sociology
- 1.3. Relationship of Sociology with other Social Sciences (history, economics, political science, psychology)
- 1.4. Application of Sociology in addressing contemporary issues
 1.4.1 Concept of G R Madan
 1.4.2 Concept of Deposit of Deposit Addressing
 - 1.4.2 Concept of Duncan Mitchell

2.0 LANGUAGE OF SOCIOLOGY

- 2.1. Society and Culture
 - 2.1.1 Introduction& definition
 - 2.1.2 Characteristic
 - 2.1.3 Types
 - 2.1.4 Functions
- 2.2. Tribe, Caste and Ethnicity
 - 2.2.1 Introduction& definition
 - 2.2.2Characteristic
 - 2.2.3 Types
 - 2.2.4 Differences
- 2.3. Community and Institutions
 - Introduction
 - Definition
 - Characteristic
 - Types
- 2.4. Homogenous & Heterogeneous
 - Population dynamics
- 2.5. Norms and Values
 - Introduction
 - Definition
 - Characteristic
 - Types
 - Function
- 2.6. Cooperation and Conflict
 - Introduction
 - Definition
 - Characteristic
 - Types
 - Differences

(4 hours)

(14 hours)

- Introduction
- Definition
 - Characteristic
- Types

•

- Interrelationships
- 2.8. Competition & Conflict
 - Introduction
 - Definition
 - Characteristic
 - Types
 - Differences
- 2.9. Association and Group
 - Introduction
 - Definition
 - Characteristic
 - Types

3.0 FUNDAMENTAL CONCEPTS IN SOCIOLOGY

(14 hour)

- 3.1. Social System
- 3.2. Social Structure:
 - Family
 - Caste
 - Ethnic group
- 3.3. Social Processes
 - Acculturation
 - Enculturation
 - Accommodation
 - Adaptation
 - Amalgamation
 - Assimilation
 - Integration
- 3.4. Socialization
 - Introduction
 - Definition
 - Characteristic
 - Stages
 - Agent
- 3.5. Social and Cultural Change
 - Introduction
 - Definition
 - Characteristic
 - Types
 - Differences
- 3.6. Social Stratification
 - Introduction
 - Definition
 - Characteristic
 - Bases
- 3.7. Social Problem and Social Control
 - Introduction
 - Definition
 - Characteristic
 - Types
 - Remedies

4.0 NEPALESE CULTURE AND SOCIETY

- Ancient
- Medieval
- Modern period
- 4.2. Caste System in Nepal
 - Introduction
 - Evolution
 - Definition
 - Merits and demerits
- 4.3. Ethnic groups and interrelationship among them
- 4.4. Religions in Nepal
 - Introduction to and origin of religion
 - Hinduism: Key features and sects: Shaivism, Vaishnavism and Shaktism
 - Buddhism: Key features and sects: Vajrayan, Mahayan and Hinayan
 - Islam: Key features and sects: Siya and Sunni
 - Christianity: Key features and sects: Catholics and Protestants
 - *Kirat:* Key features
- 4.5. Festivals in Nepal
 - Dashain
 - Tihar
 - Holi
 - Chhath
 - Lhosar
 - Eid
 - Christmas
- 4.6. Social stratification in Nepalese Societies on the basis of
 - Caste
 - Gender
 - Ethnicity
 - Age

5.0 COMMUNITY AND DEVELOPMENT

- 5.6. Meaning
- 5.7. Nature and History
- 5.8. Development Approaches
 - Concept of laissez faire by Adam Smith
 - Top down and bottom up model
- 5.9. Community organising for people's empowerment
- 5.10. Communications and community Education
 - Importance
 - Implementation ways
 - Effectiveness study
- 5.11. Community mobilization
 - Methods
 - Benefits
- 5.12. Indigenous and appropriate Technology
 - Introduction
 - Definition
 - Characteristic
 - Significance
- 5.13. Ecology and Environment
 - Concept
 - Terms

5.14. Community Participation in Development Activities

(16 hours)

- Approach
- Methods
- Benefits
- 5.15. Gender indifferences and role of women in energy conservation and development
- 5.16. Social cycle
 - 5.16.1 Modernization
 - Definition
 - Nature • •
 - Factors
 - Modernization in Nepal
 - 5.16.2 Globalization
 - Definition •
 - Nature •
 - Agents
- 5.17. Application of knowledge of sociology with special reference energy, policy, legal issues and practices, identification of issues and resolution

Recommended Books

- 1.0 Inkels Alex, "What is Sociology? Introduction in the discipline and profession", Prentice Hall of India
- 2.0 Foster GM, "Traditional Culture and Impact of Technological Change"
- 3.0 Mair L, "Applied Sociology, Anthropology"
- 4.0 Gsanlender AW, "Applied Sociology and Opportunity Problems"
- 5.0 Regmi Rishikeshav Raj, "Dimension of Nepali Society and Culture"
- 6.0 Gurung Santa Bahadur, "Rural Development Approach in Nepal" Deva Publications Kathmandu

Chapter	Lecture Hours	No. of Questions	Marks
INTRODUCTION	4	1L or 1 S	8 - 12
LANGUAGE OF	14	1L and/or 3S	12 - 24
SOCIOLOGY			
FUNDAMENTAL	14	1L and/or 2S	12 - 16
CONCEPTS IN			
SOCIOLOGY			
	12	1 S	8
NEPALESE			
CULTURE AND			
SOCIETY			
	16	2L and/or 3S	24
COMMUNITY AND			
DEVELOPMENT			
Total	60	* 2L, 7S	80

L= Long, S=Short.

*Students will have to answer 2 out of 3 Long questions & 7 out of 9 Short questions.